Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 30(12): 1902-1912, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857822

RESUMO

Glutaminase (GLS), which deaminates glutamine to form glutamate, is a mitochondrial tetrameric protein complex. Although inorganic phosphate (Pi) is known to promote GLS filamentation and activation, the molecular basis of this mechanism is unknown. Here we aimed to determine the molecular mechanism of Pi-induced mouse GLS filamentation and its impact on mitochondrial physiology. Single-particle cryogenic electron microscopy revealed an allosteric mechanism in which Pi binding at the tetramer interface and the activation loop is coupled to direct nucleophile activation at the active site. The active conformation is prone to enzyme filamentation. Notably, human GLS filaments form inside tubulated mitochondria following glutamine withdrawal, as shown by in situ cryo-electron tomography of cells thinned by cryo-focused ion beam milling. Mitochondria with GLS filaments exhibit increased protection from mitophagy. We reveal roles of filamentous GLS in mitochondrial morphology and recycling.


Assuntos
Glutaminase , Mitofagia , Camundongos , Humanos , Animais , Glutaminase/química , Glutaminase/metabolismo , Glutamina/metabolismo , Mitocôndrias/metabolismo
2.
PLoS Comput Biol ; 18(5): e1010121, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551296

RESUMO

The nucleocapsid (N) protein of the SARS-CoV-2 virus, the causal agent of COVID-19, is a multifunction phosphoprotein that plays critical roles in the virus life cycle, including transcription and packaging of the viral RNA. To play such diverse roles, the N protein has two globular RNA-binding modules, the N- (NTD) and C-terminal (CTD) domains, which are connected by an intrinsically disordered region. Despite the wealth of structural data available for the isolated NTD and CTD, how these domains are arranged in the full-length protein and how the oligomerization of N influences its RNA-binding activity remains largely unclear. Herein, using experimental data from electron microscopy and biochemical/biophysical techniques combined with molecular modeling and molecular dynamics simulations, we show that, in the absence of RNA, the N protein formed structurally dynamic dimers, with the NTD and CTD arranged in extended conformations. However, in the presence of RNA, the N protein assumed a more compact conformation where the NTD and CTD are packed together. We also provided an octameric model for the full-length N bound to RNA that is consistent with electron microscopy images of the N protein in the presence of RNA. Together, our results shed new light on the dynamics and higher-order oligomeric structure of this versatile protein.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Humanos , Microscopia Eletrônica , Simulação de Dinâmica Molecular , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , RNA Viral/genética , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
3.
Nat Commun ; 12(1): 3038, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031424

RESUMO

Mayaro virus (MAYV) is an emerging arbovirus of the Americas that may cause a debilitating arthritogenic disease. The biology of MAYV is not fully understood and largely inferred from related arthritogenic alphaviruses. Here, we present the structure of MAYV at 4.4 Å resolution, obtained from a preparation of mature, infective virions. MAYV presents typical alphavirus features and organization. Interactions between viral proteins that lead to particle formation are described together with a hydrophobic pocket formed between E1 and E2 spike proteins and conformational epitopes specific of MAYV. We also describe MAYV glycosylation residues in E1 and E2 that may affect MXRA8 host receptor binding, and a molecular "handshake" between MAYV spikes formed by N262 glycosylation in adjacent E2 proteins. The structure of MAYV is suggestive of structural and functional complexity among alphaviruses, which may be targeted for specificity or antiviral activity.


Assuntos
Infecções por Alphavirus/virologia , Alphavirus/ultraestrutura , Microscopia Crioeletrônica , Espectrometria de Massas , Alphavirus/imunologia , Infecções por Alphavirus/imunologia , Animais , Anticorpos Neutralizantes , Chlorocebus aethiops , Glicosilação , Humanos , Imunoglobulinas , Proteínas de Membrana , Células Vero
4.
Heliyon ; 5(10): e02648, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31720452

RESUMO

Lauric acid (LAH) strongly inhibits the growth of acne-causing bacteria. LAH is essentially water-insoluble and the solubility of laurate (LA) salts are medium and temperature dependent. Hence, LAH/LA preparations are difficult to formulate. Here we fully characterized phospholipid vesicles containing up to 50 mol% LAH. Vesicles of dipalmitoylphosphatidylcholine (DPPC) containing LAH, at pHs 7.4 and 5.0, were characterized measuring size, charge, bilayer phase transition temperature (Tm) and permeability of water-soluble probes. Small angle X-ray scattering and cryotransmission electron microscopy showed multilamellar vesicles at low LAH %. Increasing LAH % had a negligible effect on particle size. An internal aqueous compartment in all vesicle's preparations, even at equimolar DPPC: LAH fractions, was demonstrated using water-soluble probes. At pH 5.0, the interaction between DPPC and LAH increased the Tm and phase transition cooperativity showing a single lipid phase formed by hydrogen-bonded DPPC: LAH complexes. At pH 7.4, vesicles containing 50 mol% LAH exhibited distinct phases, ascribed to complex formation between LAH and LA or LAH and DPPC. LAH incorporated in the vesicles minimally permeated a skin preparation at both pHs, indicating that the primary sites of LAH solubilization were the skin layers. These results provide the foundations for developing processes and products containing DPPC: LAH.

5.
Cytoskeleton (Hoboken) ; 76(9-10): 457-466, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31608568

RESUMO

Septins are GTP binding proteins considered to be novel components of the cytoskeleton. They polymerize into filaments based on hexameric or octameric core particles in which two copies of either three or four different septins, respectively, assemble into a specific sequence. Viable combinations of the 13 human septins are believed to obey substitution rules in which the different septins involved must come from distinct subgroups. The hexameric assembly, for example, has been reported to be SEPT7-SEPT6-SEPT2-SEPT2-SEPT6-SEPT7. Here, we have replaced SEPT2 by SEPT5 according to the substitution rules and used transmission electron microscopy to demonstrate that the resulting recombinant complex assembles into hexameric particles which are inverted with respect that predicted previously. MBP-SEPT5 constructs and immunostaining show that SEPT5 occupies the terminal positions of the hexamer. We further show that this is also true for the assembly including SEPT2, in direct contradiction with that reported previously. Consequently, both complexes expose an NC interface, as reported for yeast, which we show to be more susceptible to high salt concentrations. The correct assembly for the canonical combination of septins 2-6-7 is therefore established to be SEPT2-SEPT6-SEPT7-SEPT7-SEPT6-SEPT2, implying the need for revision of the mechanisms involved in filament assembly.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Septinas/metabolismo , Septinas/ultraestrutura , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Expressão Gênica , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Septinas/química , Septinas/genética , Espectrometria de Massas em Tandem
6.
Nat Microbiol ; 3(12): 1429-1440, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30349081

RESUMO

Type IV secretion (T4S) systems form the most common and versatile class of secretion systems in bacteria, capable of injecting both proteins and DNAs into host cells. T4S systems are typically composed of 12 components that form 2 major assemblies: the inner membrane complex embedded in the inner membrane and the core complex embedded in both the inner and outer membranes. Here we present the 3.3 Å-resolution cryo-electron microscopy model of the T4S system core complex from Xanthomonas citri, a phytopathogen that utilizes this system to kill bacterial competitors. An extensive mutational investigation was performed to probe the vast network of protein-protein interactions in this 1.13-MDa assembly. This structure expands our knowledge of the molecular details of T4S system organization, assembly and evolution.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/química , Microscopia Crioeletrônica/métodos , Complexos Multiproteicos/química , Sistemas de Secreção Tipo IV/química , Xanthomonas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Complexos Multiproteicos/genética , Mutação , Ligação Proteica , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Sistemas de Secreção Tipo IV/genética , Xanthomonas/genética
7.
Mol Biochem Parasitol ; 214: 82-86, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28392476

RESUMO

Schistosoma mansoni depends upon the purine salvage pathway to obtain purine nucleotides; therefore, enzymes from this pathway are essential for parasite survival. Here, we focused on the adenine phosphoribosyltransferase (APRT) enzyme, which catalyzes the condensation reaction between adenine and PRPP (5-phosphoribosylpyrophosphate) to produce AMP and PPi. Kinetic experiments using the heterologously expressed protein of one APRT isoform from S. mansoni indicate that it is catalytically active, and whole-mount in situ hybridization studies indicate that the transcripts of this protein are concentrated in the posterior region of the ovary and vitellaria of female adult worms. Moreover, a phylogenetic analysis has shown that APRT exists in multiple copies originating from gene duplications at the base of the Schistosoma genus. Other enzymes from the purine and pyrimidine salvage pathways have also been found to present multiple copies in schistosomes, suggesting that evolutionary pressure to diversify these genes' families may be related to a specialized role in parasite reproduction.


Assuntos
Adenina Fosforribosiltransferase/análise , Ovário/enzimologia , Schistosoma mansoni/enzimologia , Adenina Fosforribosiltransferase/genética , Monofosfato de Adenosina/metabolismo , Estruturas Animais/enzimologia , Animais , Evolução Molecular , Feminino , Duplicação Gênica , Fosfatos/metabolismo , Filogenia , Schistosoma mansoni/genética
8.
Acta Trop ; 170: 190-196, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28288799

RESUMO

The parasite Schistosoma mansoni possesses all pathways for pyrimidine biosynthesis, in which dihydrofolate reductase (DHFR), thymidylate cycle participants, is essential for nucleotide metabolism to obtain energy and structural nucleic acids. Thus, DHFRs have been widely suggested as therapeutic targets for the treatment of infectious diseases. In this study, we expressed recombinant SmDHFR in a heterologous manner to obtain structural, biochemical and kinetic information. X-ray diffraction of recombinant SmDHFR at 1.95Å resolution showed that the structure exhibited the canonical DHFR fold. Isothermal titration calorimetry was used to determine the kinetic constants for NADP+ and dihydrofolate. Moreover, inhibition assays were performed using the commercial folate analogs methotrexate and aminopterin; these analogs are recognized as folate competitors and are used as chemotherapeutic agents in cancer and autoimmune diseases. This study provides information that may prove useful for the future discovery of novel drugs and for understanding these metabolic steps from this pathway of S. mansoni, thus aiding in our understanding of the function of these essential pathways for parasite metabolism.


Assuntos
Schistosoma mansoni/enzimologia , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Animais , Antagonistas do Ácido Fólico/farmacologia , Humanos , Cinética , Metotrexato/farmacologia , Proteínas Recombinantes , Difração de Raios X
9.
Biochimie ; 125: 12-22, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26898674

RESUMO

Reports of Schistosoma mansoni strains resistant to praziquantel, the only therapeutic strategy available for the treatment of schistosomiasis, have motivated the scientific community towards the search for new possible therapies. Biochemical characterization of the parasite's metabolism is an essential component for the rational development of new therapeutic alternatives. One of the so far uncharacterized enzymes is uridine phosphorylase (UP) (EC 2.4.2.3), for which the parasite genome presents two isoforms (SmUPa and SmUPb) that share 92% sequence identity. In this paper, we present crystal structures for SmUPa and SmUPb in their free states as well as bound to different ligands. This we have complemented by enzyme kinetic characterization and phylogenetic analyses. Both enzymes present an overall fold and active site structure similar to other known UPs. The kinetic analyses showed conclusively that SmUPa is a regular uridine phosphorylase but by contrast SmUPb presented no detectable activity. This is particularly noteworthy given the high level of sequence identity between the two isoforms and is probably the result of the significant differences observed for SmUPb in the vicinity of the active site itself, suggesting that it is not a UP at all. On the other hand, it was not possible to identify an alternative function for SmUPb, although our phylogenetic analyses and expression data suggest that SmUPb is still functional and plays a role in parasite metabolism. The unusual UPb isoform may open up new opportunities for understanding unique features of S. mansoni metabolism.


Assuntos
Proteínas de Helminto/química , Schistosoma mansoni/enzimologia , Uridina Fosforilase/química , Animais , Cristalografia por Raios X , Isoenzimas , Domínios Proteicos
10.
J Mol Biol ; 427(15): 2491-2506, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26013164

RESUMO

Poly(A)-binding proteins (PABPs) play crucial roles in mRNA biogenesis, stability, transport and translational control in most eukaryotic cells. Although animal PABPs are well-studied proteins, the biological role, three-dimensional structure and RNA-binding mode of plant PABPs remain largely uncharacterized. Here, we report the structural features and RNA-binding mode of a Citrus sinensis PABP (CsPABPN1). CsPABPN1 has a domain architecture of nuclear PABPs (PABPNs) with a single RNA recognition motif (RRM) flanked by an acidic N-terminus and a GRPF-rich C-terminus. The RRM domain of CsPABPN1 displays virtually the same three-dimensional structure and poly(A)-binding mode of animal PABPNs. However, while the CsPABPN1 RRM domain specifically binds poly(A), the full-length protein also binds poly(U). CsPABPN1 localizes to the nucleus of plant cells and undergoes a dimer-monomer transition upon poly(A) interaction. We show that poly(A) binding by CsPABPN1 begins with the recognition of the RNA-binding sites RNP1 and RNP2, followed by interactions with residues of the ß2 strands, which stabilize the dimer, thus leading to dimer dissociation. Like human PABPN1, CsPABPN1 also seems to form filaments in the presence of poly(A). Based on these data, we propose a structural model in which contiguous CsPABPN1 RRM monomers wrap around the RNA molecule creating a superhelical structure that could not only shield the poly(A) tail but also serve as a scaffold for the assembly of additional mRNA processing factors.


Assuntos
Citrus sinensis/metabolismo , Proteínas de Plantas , Proteínas de Ligação a Poli(A) , Multimerização Proteica , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA , Sequência de Aminoácidos , Citrus sinensis/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Ligação a Poli(A)/química , Proteínas de Ligação a Poli(A)/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , RNA de Plantas/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos
11.
Langmuir ; 31(11): 3308-17, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25730494

RESUMO

This work presents a study of the association between low molecular weight hyaluronic acid (16 kDa HA) and cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The cationic liposome/HA complexes were evaluated to determine their mesoscopic structure, average size, zeta potential, and morphology as a function of the amount of HA in the system. Small angle X-ray scattering results revealed that neighboring cationic liposomes either stick together after a partial coating of low concentration HA or disperse completely in excess of HA, but they never assemble as multilamellar vesicles. Cryo-transmission electron microscopy images confirm the existence of unilamellar vesicles and large aggregates of unilamellar vesicles for HA fractions up to 80% (w/w). High concentrations of HA (> 20% w/w) proved to be efficient for coating extruded liposomes, leading to particle complexes with sizes in the nanoscale range and a negative zeta potential.


Assuntos
Ácido Hialurônico/química , Lipossomos/química , Cátions/química , Peso Molecular , Fosfatidiletanolaminas/química
12.
Mol Plant Microbe Interact ; 26(11): 1281-93, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23902259

RESUMO

Cerato-platanins (CP) are small, cysteine-rich fungal-secreted proteins involved in the various stages of the host-fungus interaction process, acting as phytotoxins, elicitors, and allergens. We identified 12 CP genes (MpCP1 to MpCP12) in the genome of Moniliophthora perniciosa, the causal agent of witches' broom disease in cacao, and showed that they present distinct expression profiles throughout fungal development and infection. We determined the X-ray crystal structures of MpCP1, MpCP2, MpCP3, and MpCP5, representative of different branches of a phylogenetic tree and expressed at different stages of the disease. Structure-based biochemistry, in combination with nuclear magnetic resonance and mass spectrometry, allowed us to define specialized capabilities regarding self-assembling and the direct binding to chitin and N-acetylglucosamine (NAG) tetramers, a fungal cell wall building block, and to map a previously unknown binding region in MpCP5. Moreover, fibers of MpCP2 were shown to act as expansin and facilitate basidiospore germination whereas soluble MpCP5 blocked NAG6-induced defense response. The correlation between these roles, the fungus life cycle, and its tug-of-war interaction with cacao plants is discussed.


Assuntos
Agaricales/genética , Cacau/microbiologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , Doenças das Plantas/microbiologia , Acetilglucosamina/metabolismo , Agaricales/efeitos dos fármacos , Agaricales/crescimento & desenvolvimento , Agaricales/metabolismo , Sequência de Bases , Parede Celular/metabolismo , Quitina/metabolismo , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Expressão Gênica , Interações Hospedeiro-Patógeno , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Filogenia , Ligação Proteica , Análise de Sequência de DNA , Análise de Sequência de RNA , Esporos Fúngicos
13.
J Biol Chem ; 288(39): 28009-20, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23935106

RESUMO

The phosphate-dependent transition between enzymatically inert dimers into catalytically capable tetramers has long been the accepted mechanism for the glutaminase activation. Here, we demonstrate that activated glutaminase C (GAC) self-assembles into a helical, fiber-like double-stranded oligomer and propose a molecular model consisting of seven tetramer copies per turn per strand interacting via the N-terminal domains. The loop (321)LRFNKL(326) is projected as the major regulating element for self-assembly and enzyme activation. Furthermore, the previously identified in vivo lysine acetylation (Lys(311) in humans, Lys(316) in mouse) is here proposed as an important down-regulator of superoligomer assembly and protein activation. Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, a known glutaminase inhibitor, completely disrupted the higher order oligomer, explaining its allosteric mechanism of inhibition via tetramer stabilization. A direct correlation between the tendency to self-assemble and the activity levels of the three mammalian glutaminase isozymes was established, with GAC being the most active enzyme while forming the longest structures. Lastly, the ectopic expression of a fiber-prone superactive GAC mutant in MDA-MB 231 cancer cells provided considerable proliferative advantages to transformed cells. These findings yield unique implications for the development of GAC-oriented therapeutics targeting tumor metabolism.


Assuntos
Inibidores Enzimáticos/química , Regulação Neoplásica da Expressão Gênica , Glutaminase/metabolismo , Multimerização Proteica , Algoritmos , Sítio Alostérico , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células , Reagentes de Ligações Cruzadas , Cristalografia por Raios X , Glutaminase/química , Humanos , Isoenzimas/química , Microscopia Eletrônica de Transmissão , Mutagênese , Mutação , Fosfatos/metabolismo , Polímeros/química , Conformação Proteica , Proteínas Recombinantes/metabolismo
14.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 1): 126-36, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23275171

RESUMO

In adult schistosomes, the enzyme adenosine kinase (AK) is responsible for the incorporation of some adenosine analogues, such as 2-fluoroadenosine and tubercidin, into the nucleotide pool, but not others. In the present study, the structures of four complexes of Schistosoma mansoni AK bound to adenosine and adenosine analogues are reported which shed light on this observation. Two differences in the adenosine-binding site in comparison with the human counterpart (I38Q and T36A) are responsible for their differential specificities towards adenosine analogues, in which the Schistosoma enzyme does not tolerate bulky substituents at the N7 base position. This aids in explaining experimental data which were reported in the literature more than two decades ago. Furthermore, there appears to be considerable plasticity within the substrate-binding sites that affects the side-chain conformation of Ile38 and causes a previously unobserved flexibility within the loop comprising residues 286-299. These results reveal that the latter can be sterically occluded in the absence of ATP. Overall, these results contribute to the body of knowledge concerning the enzymes of the purine salvage pathway in this important human parasite.


Assuntos
Adenosina Quinase/química , Adenosina/química , Schistosoma mansoni/enzimologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina Quinase/genética , Adenosina Quinase/metabolismo , Animais , Cristalização , Cristalografia por Raios X , Humanos , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo , Alinhamento de Sequência , Especificidade por Substrato/genética
15.
Protein Expr Purif ; 88(1): 80-4, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23266652

RESUMO

Selenocysteine Synthase (SELA, E.C. 2.9.1.1) from Escherichia coli is a homodecamer pyridoxal-5'-phosphate containing enzyme responsible for the conversion of seryl-tRNA(sec) into selenocysteyl-tRNA(sec) in the biosynthesis of the 21th amino acid, selenocysteine (Sec or U). This paper describes the cloning of the E. coli selA gene into a modified pET29a(+) vector and its expression in E. coli strain WL81460, a crucial modification allowing SELA expression without bound endogenous tRNA(sec). This expression strategy enabled the purification and additional biochemical and biophysical characterization of the SELA decamer. The homogeneous SELA protein was obtained using three chromatographic steps. Size Exclusion Chromatography and Native Gel Electrophoresis showed that SELA maintains a decameric state with molecular mass of approximately 500 kDa with an isoelectric point of 6,03. A predominance of α-helix structures was detected by circular dichroism with thermal stability up to 45 °C. The oligomeric assemblage of SELA was investigated by glutaraldehyde crosslinking experiments indicate that SELA homodecameric structure is the result of a stepwise addition of intermediate oligomeric states and not a direct monomer to homodecamer transition. Our results have contributed to the establishment of a robust expression model for the enzyme free of bound RNA and are of general interest to be taken into consideration in all cases of heterologous/homologous expressions of RNA-binding proteins avoiding the carryover of endogenous RNAs, which may interfere with further biochemical characterizations.


Assuntos
Escherichia coli/enzimologia , Proteínas Recombinantes/isolamento & purificação , Transferases/química , Transferases/isolamento & purificação , Biofísica , Peso Molecular , Estrutura Secundária de Proteína , Fosfato de Piridoxal/química , RNA de Transferência Aminoácido-Específico/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Selenocisteína/biossíntese , Selenocisteína/química
16.
Proc Natl Acad Sci U S A ; 109(4): 1092-7, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22228304

RESUMO

Glutamine is an essential nutrient for cancer cell proliferation, especially in the context of citric acid cycle anaplerosis. In this manuscript we present results that collectively demonstrate that, of the three major mammalian glutaminases identified to date, the lesser studied splice variant of the gene gls, known as Glutaminase C (GAC), is important for tumor metabolism. We show that, although levels of both the kidney-type isoforms are elevated in tumor vs. normal tissues, GAC is distinctly mitochondrial. GAC is also most responsive to the activator inorganic phosphate, the content of which is supposedly higher in mitochondria subject to hypoxia. Analysis of X-ray crystal structures of GAC in different bound states suggests a mechanism that introduces the tetramerization-induced lifting of a "gating loop" as essential for the phosphate-dependent activation process. Surprisingly, phosphate binds inside the catalytic pocket rather than at the oligomerization interface. Phosphate also mediates substrate entry by competing with glutamate. A greater tendency to oligomerize differentiates GAC from its alternatively spliced isoform and the cycling of phosphate in and out of the active site distinguishes it from the liver-type isozyme, which is known to be less dependent on this ion.


Assuntos
Glutaminase/química , Glutaminase/metabolismo , Mitocôndrias/metabolismo , Modelos Moleculares , Neoplasias/metabolismo , Linhagem Celular Tumoral , Cristalização , Cristalografia por Raios X , Imunofluorescência , Humanos , Immunoblotting , Imuno-Histoquímica , Fosfatos/metabolismo , Ligação Proteica , Espalhamento a Baixo Ângulo
17.
Croat Med J ; 46(4): 647-56, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16100769

RESUMO

AIM: Identification of differences in the gene expression patterns of Down syndrome and normal leukocytes. METHODS: We constructed the first Down syndrome leukocyte serial analysis of gene expression (SAGE) library from a 28 year-old patient. This library was analyzed and compared with a normal leukocyte SAGE library using the eSAGE software. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to validate the results. RESULTS: We found that a large number of unidentified transcripts were overexpressed in Down syndrome leukocytes and some transcripts coding for growth factors (e.g. interleukin 8, IL-8), ribosomaproteins (e.g. L13a, L29, and L37), and transcription factors (e.g., Jun B, Jun D, and C/EBP beta) were underexpressed. The SAGE data were successfully validated for the genes IL-8, CXCR4, BCL2A1, L13a, L29, L37, and GTF3A using RT-PCR. CONCLUSION: Our analysis identified significant changes in the expression pattern of Down syndrome leukocytes compared with normal ones, including key regulators of growth and proliferation, ribosomal proteins, and a large number of overexpressed transcripts that were not matched in UniGene clusters and that may represent novel genes related to Down syndrome. This study offers a new insight into transcriptional changes in Down syndrome leukocytes and indicates candidate genes for further investigations into the molecular mechanism of Down syndrome pathology.


Assuntos
Síndrome de Down/genética , Perfilação da Expressão Gênica , Leucócitos/metabolismo , Adulto , Sequência de Bases , Primers do DNA , Síndrome de Down/sangue , Humanos , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
BMC Microbiol ; 2: 14, 2002 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-12079503

RESUMO

BACKGROUND: Methods for the extraction of DNA from filamentous fungi are frequently laborious and time consuming because most of the available protocols include maceration in liquid nitrogen after the mycelium has been grown in a liquid culture. This paper describes a new method to replace those steps, which involves the growth of the mycelium on cellophane disks overlaid on solid medium and the use of glass beads for cell wall disruption. RESULTS: Extractions carried out by this method provided approximately 2 microg of total DNA per cellophane disk for the filamentous fungus Trichoderma reesei. To assess the DNA's quality, we made a PCR (Polymerase Chain Reaction) amplification of a gene introduced by a transformation in this fungus's genome (hph gene), with successful results. We also confirmed the quality of the DNA by the use of Southern blotting to analyze the presence of the same gene, which was easily detected, resulting in a sharply defined and strong band. CONCLUSIONS: The use of this method enabled us to obtain pure DNA from Trichoderma reesei, dispensing with the laborious and time-consuming steps involved in most protocols. The DNA obtained was found to be suitable for PCR and Southern blot analyses. Another advantage of this method is the fact that several samples can be processed simultaneously, growing the fungus on multiple well cell culture plates. In addition, the absence of maceration also reduces sample handling, minimizing the risks of contamination, a particularly important factor in work involving PCR.


Assuntos
Celofane , DNA Fúngico/isolamento & purificação , Micologia/métodos , Trichoderma/genética , Parede Celular/metabolismo , Criopreservação , Meios de Cultura/metabolismo , Vidro , Microesferas , Micologia/instrumentação , Nitrogênio/metabolismo , Trichoderma/crescimento & desenvolvimento , Trichoderma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...